The Structures of $\left[\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{~N}_{6}\right)(\mathrm{NCS})_{2}\right] . \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{~N}_{6}\right)\left(\mathrm{NO}_{2}\right)\right] \mathrm{ClO}_{4}$. Conformation and Configuration in a Tetradentate Bis-hydrazone Ligand

By Alan R. Davis, Frederick W. B. Einstein* and Anthony C. Willis
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

(Received 2 April 1981; accepted 13 July 1981)

Abstract

(3,5,5,10, 10,12 -Hexamethyl-1,2,6,9, 13,14 -hexaaza-tetradeca-2,12-diene)bis(thiocyanato- N) nickel(II) monohydrate, $\left[\mathrm{Ni}(L 1)(\mathrm{NCS})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=477 \cdot 3$, crystallizes in the monoclinic space group $P 2_{1} / n$, with [at $294(\pm 1) \mathrm{K}] a=11.227$ (6), $b=12.088$ (6), $c=$ 16.890 (6) $\AA, \beta=99.39$ (3) ${ }^{\circ}, V=2261.5 \AA^{3}, Z=4$; D_{m} (by flotation) $=1.36, D_{c}=1.401 \mathrm{Mg} \mathrm{m}^{-3}, \mu($ Mo $K \alpha)=1.059 \mathrm{~mm}^{-1}$. The final $R=6.0 \%$ for 2257 counter reflexions. The tetradentate ligand $L 1$ adopts a near-planar configuration in the irregular octahedral Ni -atom environment, with trans N -bonded thiocyanate ligands $[\mathrm{Ni}-\mathrm{N}=2.116$ (8) and 2.077 (8) \AA]. The $\mathrm{Ni}-\mathrm{N}$ lengths to $L 1$ are equal within error, and average $2 \cdot 134(5) \AA .\left[\mathrm{Ni}(L 1)\left(\mathrm{NO}_{2}\right)\right] \mathrm{ClO}_{4}, M_{r}=$ 488.6, crystallizes in the monoclinic space group $C 2 / c$, with [at $294(\pm 1) \mathrm{K}] a=31.144$ (9), $b=11.278$ (3), $c=14.920$ (4) $\AA, \beta=123.37$ (1) ${ }^{\circ}$ (reduced cell: $a^{\prime}=$ $\left.26 \cdot 103 \AA, b^{\prime}=b, c^{\prime}=c, \beta^{\prime}=94.85^{\circ}\right), V=4376.6 \AA^{3}$, $Z=8 ; D_{m}$ (by flotation) $=1.49, D_{c}=1.483 \mathrm{Mg} \mathrm{m}^{-3}$, $\mu($ Mo $K a)=1.054 \mathrm{~mm}^{-1}$. The final $R=4.1 \%$ for 2539 reflexions. $L 1$ is in a folded configuration, with the remaining positions in the irregular octahedral coordination geometry occupied by the asymmetrically bonded, bidentate nitrite ligand $[\mathrm{Ni}-\mathrm{O}=2 \cdot 132$ (4) and 2.171 (4) $\AA]$. The $\mathrm{Ni}-\mathrm{N}$ bond lengths to $L 1$ range from 2.071 (4) to 2.097 (3) \AA.

Introduction

The use of dihydrazine and dihydrazone ligands in Schiff-base-type condensation reactions has been extensively studied (Kerwin \& Melson, 1972; Peng \& Goedken, 1973). Such syntheses utilize the steric benefits of template condensations to give products containing macrocyclic ligands, while overcoming the masking of nucleophilic character which occurs when an amine is coordinated to a metal (Lindoy, 1971).

The condensation reaction of 2,3-butanedione with the $\mathrm{Ni}^{I I}$ complex of the tetradentate ligand

[^0]0567-7408/82/020437-06\$01.00

3,5,5,10,10,12-hexamethyl-1,2,6,9,13,14-hexaazatetra-deca-2,12-diene, $L 1$, proceeds via several isolable intermediates to yield a complex of the diazine [16] macrocycle $3,4,7,9,9,14,14,16$-octamethyl-1,2,5,6,10,-13-hexaazacyclohexadeca-2,4,6,16-tetraene, $L 2$ (Curtis, 1980).

Several derivatives of $[\mathrm{Ni}(L 1)]^{2+}$ have been prepared (Curtis, 1980). The crystal structures of two are reported here: $\left[\mathrm{Ni}(L 1)(\mathrm{NCS})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$, in which $L 1$ is planar, and $\left[\mathrm{Ni}(L 1)\left(\mathrm{NO}_{2}\right)\right] . \mathrm{ClO}_{4}$ (II), in which $L 1$ is folded. These structures provide an opportunity to observe the flexibility of the ligand and provide a comparison with the structural work on the condensation product, which is presented in the following paper (Davis, Einstein \& Willis, 1982).

X-ray data collection

Samples of (I) and (II) were supplied by Professor Neil F. Curtis, Victoria University of Wellington, Wellington, New Zealand. Crystals of (I) are royal blue while (II) are violet. $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.5418 \AA$) was used to obtain Weissenberg and precession photographs which established space group $P 2_{1} / n$ (systematic absences $h 0 l: h+l=2 n+1$ and $0 k 0: k=$ $2 n+1$) for (1) and $C c$ or $C 2 / c$ (systematic absences $h k l: h+k=2 n+1$ and $h 0 l: l=2 n+1$) for (II). The choice of centrosymmetric space group $C 2 / c$ was confirmed in the subsequent refinement.

The crystals were mounted on a Picker FACS-I computer-controlled four-circle diffractometer fitted with a scintillation detector and a pulse-height analyser. Centring of 12 of the strongest reflexions with $2 \theta>25^{\circ}$
© 1982 International Union of Crystallography

Table 1. Experimental conditions for data collection

		(I)
(II)		
Crystal size (mm)	$0.7 \times 0.7 \times 0.7$	$0.3 \times 0.4 \times 0.6$
Inner data: 2θ range $\left({ }^{\circ}\right)$	$0 \rightarrow 30$	$0 \rightarrow 20$
scan width $\left({ }^{\circ}\right)$	1.6	1.8
Outer data: 2θ range $\left({ }^{\circ}\right)$	$30 \rightarrow 45$	$20 \rightarrow 45$
scan width $\left({ }^{\circ}\right)$	1.6	1.2
Variation of standards	$\pm 3 \%$	$\pm 3 \%$
Number of measured data	2927	2859
Number of observed data	2257	2539

(graphite-monochromated Mo $K \alpha$ radiation, $\lambda=$ $0.70926 \AA$) for each crystal gave setting angles which were used in a least-squares refinement of cell and orientation parameters.

A unique set of intensities was collected for each compound. A symmetrical $\theta-2 \theta$ scanning mode was employed with a scan speed of $2^{\circ} \mathrm{min}^{-1}$. The selected scan widths (chosen in each instance to take account of the size and shape of the diffracted rays) were increased to allow for dispersion, and background counts of 10 s were measured at both scan limits. Details of the data collection for each crystal are included in Table 1.

The intensities were measured in two sets based on 2θ values (Table 1). After every 100 reflexions two standard reflexions were monitored to check instrumental stability and the crystal orientation. No sample decomposition was observed. Absorption was neglected in each case since the estimated maximum error in F was negligible for $\left[\mathrm{Ni}(L 1)(\mathrm{NCS})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and $1 \cdot 1 \%$ for $\left[\mathrm{Ni}(L 1)\left(\mathrm{NO}_{2}\right)\right] \mathrm{ClO}_{4}$.

Measured intensities were corrected for Lorentz and polarization effects, and were classed as observed if $I>$ $2 \cdot 3 \sigma_{1}$, where $\sigma_{1}=\left[T+\left(t_{s} / t_{b}\right)^{2}\left(B_{1}+B_{2}\right)+(k I)^{2}\right]^{1 / 2} ; T$ is the total count, B_{1} and B_{2} are the background counts, t_{s} is the scan time, t_{b} is the total background time, k is a constant set at 0.03 , and I is the net count.

Solution and refinement

In each structure the heavy-atom positions were determined from the Patterson synthesis. Subsequent electron-density maps and least-squares refinement led to the location of the remaining non-hydrogen atoms. At this stage anisotropic temperature factors were assigned, first to the heavy atoms, and then to the lighter atoms. H atoms were located from difference maps or were calculated $\left[r_{\mathrm{C}-\mathrm{H}}=0.95, r_{\mathrm{N}-\mathrm{H}}=0.87 \AA\right.$ (Churchill, 1973)]. They were included in the structure factor calculations (with isotropic $B=5.0 \AA^{2}$) but their parameters were not refined. In (II) it was noticed that the thermal parameters in one chelate ring $[C(13)$ through $C(18)$] were extremely anisotropic, suggesting that there might be disorder due to two alternative conformations of the ring. Each of these C atoms was
split over two half-occupied positions. Refinement of this model, initially with isotropic temperature factors and then anisotropically, gave a chemically reasonable model.

Refinement was continued until all shift-to-error ratios were $<0 \cdot 2$. The final agreement factors ($R=$ $\left.\sum\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|\right)$ were 0.060 (249 variables) for (I) and 0.041 (317 variables) for (II). The major features in final difference maps were ± 0.6 (1) e \AA^{-3} near the Ni atom in (I) and ± 0.4 (1) e \AA^{-3} near the Ni atom and perchlorate group in (II). Examination of the average values of $w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ showed no systematic trends as a function of $(\sin \theta) / \lambda$ or $\left|F_{o}\right|$.

Refinement was by full-matrix least-squares minimizing the function $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where $w=1 / \sigma_{F}^{2}$ $\left[\sigma_{F}=\sigma_{I} /(\mathrm{Lp})\left(2 F_{o}\right)\right]$. Neutral scattering factors for all atoms and anomalous dispersion corrections for Ni and Cl were taken from International Tables for X-ray Crystallography (1974).

Computer programs have been referenced previously (Einstein \& Jones, 1972). Fractional coordinates for the two structures are given in Tables 2 and 3. Table 4 gives the bond lengths and angles. Fig. 1 shows the

Table 2. Fractional atomic coordinates $\left(\times 10^{4}, \times 10^{5}\right.$ for Ni) and temperature factors $\left(\AA^{2} \times 10^{3}\right)$ for $\left[\mathrm{Ni}(L 1)(\mathrm{NCS})_{2}\right] . \mathrm{H}_{2} \mathrm{O}$

In this and all other tables, least-squares e.s.d.'s are given in parentheses. $U_{\text {eq. }}=\frac{1}{3} \grave{L}_{i} \grave{L}_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.

	x	y	z	$U_{\text {eq. }}$
Ni	$-1299(6)$	$-528(6)$	$25541(4)$	$38.3(1)$
$\mathrm{S}(1)$	$3588(2)$	$746(6)$	$4344(1)$	$59(1)$
$\mathrm{S}(2)$	$-3535(2)$	$-746(2)$	$470(1)$	$89(2)$
$\mathrm{N}(71)$	$1307(5)$	$305(4)$	$3495(3)$	$49(4)$
$\mathrm{N}(72)$	$-1481(5)$	$-525(5)$	$1624(3)$	$51(4)$
$\mathrm{N}(1)$	$-544(4)$	$-1379(4)$	$3309(3)$	$43(3)$
$\mathrm{N}(2)$	$-1503(4)$	$951(4)$	$2923(3)$	$42(3)$
$\mathrm{N}(3)$	$373(4)$	$1492(4)$	$2096(3)$	$41(3)$
$\mathrm{N}(4)$	$1071(4)$	$-869(4)$	$1897(3)$	$46(3)$
$\mathrm{N}(5)$	$341(5)$	$-2207(4)$	$3518(4)$	$58(4)$
$\mathrm{N}(6)$	$921(5)$	$-2014(5)$	$1867(3)$	$57(4)$
$\mathrm{C}(5)$	$-1416(5)$	$-1395(5)$	$3714(4)$	$44(4)$
$\mathrm{C}(6)$	$-1480(6)$	$-2218(6)$	$4379(4)$	$59(5)$
$\mathrm{C}(7)$	$-2422(6)$	$-573(5)$	$3518(4)$	$54(4)$
$\mathrm{C}(8)$	$-2086(5)$	$669(5)$	$3637(4)$	$43(4)$
$\mathrm{C}(9)$	$-1224(6)$	$879(5)$	$4396(4)$	$56(4)$
$\mathrm{C}(10)$	$-3257(6)$	$1333(6)$	$3614(5)$	$70(5)$
$\mathrm{C}(11)$	$-1115(6)$	$2128(5)$	$2886(4)$	$52(4)$
$\mathrm{C}(12)$	$-628(6)$	$2283(6)$	$2120(4)$	$61(5)$
$\mathrm{C}(13)$	$1046(5)$	$1548(5)$	$1398(4)$	$43(4)$
$\mathrm{C}(14)$	$213(6)$	$1197(6)$	$638(4)$	$57(5)$
$\mathrm{C}(15)$	$1499(6)$	$2736(6)$	$1295(4)$	$62(5)$
$\mathrm{C}(16)$	$2149(6)$	$784(5)$	$1598(4)$	$51(5)$
$\mathrm{C}(17)$	$1928(5)$	$-451(5)$	$1601(4)$	$45(4)$
$\mathrm{C}(18)$	$2771(7)$	$-1164(6)$	$1213(5)$	$70(5)$
$\mathrm{C}(71)$	$2257(6)$	$482(5)$	$3847(4)$	$40(4)$
$\mathrm{C}(72)$	$-2325(6)$	$-610(5)$	$1151(4)$	$48(4)$
$\mathrm{O}(1)$	$-4391(11)$	$534(10)$	$1828(8)$	$121(6) \dagger$

Table 3. Fractional atomic coordinates $\left(\times 10^{4}, \times 10^{5}\right.$ for Ni and Cl) and temperature factors $\left(\AA^{2} \times 10^{3}\right)$ for $\left[\mathrm{Ni}(L 1) \mathrm{NO}_{2}\right]\left(\mathrm{ClO}_{4}\right)$

$U_{\text {eq. }}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{l} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$.
Ni	10777 (2)	13158 (5)	18973 (4)	$40 \cdot 5$ (4)
Cl	34977 (6)	11180 (14)	23651 (13)	61 (1)
O(11)	3308 (3)	1594 (5)	1351 (5)	110 (5)
O(12)	3697 (3)	1993 (6)	3155 (6)	127 (7)
O(13)	3163 (4)	662 (6)	2588 (5)	128 (8)
O (14)	3762 (3)	70 (6)	2567 (5)	196 (9)
O(71)	865 (2)	-279 (3)	983 (3)	59 (2)
O (72)	437 (1)	238 (3)	1616 (3)	60 (2)
N(7)	487 (2)	-511(4)	1066 (4)	65 (3)
N(1)	1684 (1)	1975 (3)	1832 (3)	37 (2)
N(2)	532 (1)	2299 (3)	552 (3)	38 (2)
N(3)	1028 (1)	2724 (3)	2728 (3)	37 (2)
N(4)	1542 (2)	328 (4)	3277 (4)	49 (3)
N(5)	2179 (1)	1571 (4)	2651 (3)	51 (3)
N(6)	1744 (2)	-700 (4)	3166 (4)	72 (3)
C(5)	1670 (2)	2840 (4)	1252 (4)	39 (3)
C(6)	2157 (2)	3365 (3)	1468 (5)	69 (4)
C(7)	1177 (2)	3404 (4)	385 (4)	46 (3)
C(8)	681 (2)	2690 (4)	-205 (3)	41 (3)
C(9)	731 (2)	1583 (5)	-730 (4)	58 (3)
C(10)	262 (2)	3487 (5)	-1085 (4)	64 (3)
C(11)	358 (2)	3286 (4)	937 (4)	47 (3)
C(12)	476 (2)	3034 (5)	2048 (4)	48 (3)
C(13)	1185 (10)	2644 (24)	3934 (18)	37 (9)
$\mathrm{C}\left(13^{\prime}\right) \dagger$	1301 (11)	2487 (24)	3891 (24)	40 (11)
C(14)	1200 (12)	3730 (21)	4460 (17)	88 (10)
C(14')	1036 (16)	3436 (32)	4232 (31)	126 (15)
C(15)	832 (5)	1651 (11)	3968 (10)	90 (9)
C(15')	1848 (7)	2872 (18)	4443 (9)	80 (10)
C(16)	1727 (5)	2002 (10)	4426 (8)	32 (7)
C(16')	1219 (6)	1361 (13)	4156 (10)	98 (11)
C(17)	1820 (5)	781 (12)	4264 (10)	30 (7)
C(17')	1575 (6)	470 (14)	4134 (14)	65 (10)
C(18)	2154 (15)	49 (30)	5228 (25)	111 (17)
C(18')	1966 (14)	-55 (33)	5172 (28)	108 (15)

\dagger Atoms corresponding to the alternative positions of the disordered chelate ring $C(13)$ through $C(18)$ are denoted by primes, i.e. $\mathrm{C}\left(13^{\prime}\right)$ through $\mathrm{C}\left(18^{\prime}\right)$.

Fig. 1. A perspective view of the $\left[\mathrm{Ni}(L 1)(\mathrm{NCS})_{2}\right]$ molecule, showing the thermal motion (50%) and labelling.

Fig. 2. A perspective view of the $\left[\mathrm{Ni}(L 1)\left(\mathrm{NO}_{2}\right)\right]^{+}$cation showing the thermal motion (50%) and labelling. Only one of the two positions of the disordered chelate $[\mathrm{C}(13)$ to $\mathrm{C}(18)]$ is shown.

Fig. 3. The conformations of the chelate rings in $\left[\mathrm{Ni}\left(L_{1}\right)(\mathrm{NCS})_{2}\right]$ as generated in each case by the displacements of atoms from the plane containing the Ni and two donor atoms. The planes used to generate these diagrams are given in the deposited data.
$\left[\mathrm{Ni}(L 1)(\mathrm{NCS})_{2}\right]$ molecule, and Fig. 2 the $[\mathrm{Ni}(L 1)-$ $\left.\left(\mathrm{NO}_{2}\right)\right]^{+}$cation. Figs. 3 and 4 illustrate the conformations adopted by the chelate rings of the tetradentate ligand. Figs. 5 and 6 compare the torsion angles within this ligand in the two configurations.*

Description and discussion

The geometry of the coordination sphere of the Ni atom of (I) is close to octahedral. The $\mathrm{Ni}-\mathrm{N}$ lengths to the tetradentate ligand are equal within error [mean

[^1]

Fig. 4. The conformations of the chelate rings adopted by the tetradentate ligand $L 1$ in $\left[\mathrm{Ni}(L 1)\left(\mathrm{NO}_{2}\right)\right]^{+}$. Both positions of the disordered chelate [i.e. $C(13)$ to $C(18)$ and $C\left(13^{\prime}\right)$ to $C\left(18^{\prime}\right)$] are shown.

Fig. 5. Torsion angles about the tetradentate ligand $L 1$ in $\left\lfloor\mathrm{Ni}(L 1)(\mathrm{NCS})_{2}\right]$. E.s.d.'s are $\sim 0.4^{\circ}$ for $\mathrm{Ni}-\mathrm{N}, \sim 0.7^{\circ}$ others.
$2 \cdot 134$ (5) $\AA]^{*}$ and within the range of bond lengths suggested for such ligands (Curtis, 1968). There is no suggestion of the $\mathrm{Ni}-\mathrm{N}$ (imine) bonds being shorter than the $\mathrm{Ni}-\mathrm{N}$ (amine) bonds, though differences of as much as $0.04 \AA$ have been observed for some [14] diene N_{4} macrocycles (Curtis, 1979). Two of the $\mathrm{N}-\mathrm{Ni}-\mathrm{N}$ angles depart significantly from right angles:

[^2]

Fig. 6. Torsion angles about the tetradentate ligand $L 1$ in $\left[\mathrm{Ni}(L 1)\left(\mathrm{NO}_{2}\right)\right]^{+}$. In the disordered chelate values for both orientations are given (primed values in parentheses). E.s.d.'s are, in the ordered region, $\sim 0.3^{\circ}$ for $\mathrm{Ni}-\mathrm{N}, \sim 0.7^{\circ}$ others; in the disordered region, $\sim 1.3^{\circ}$ for $\mathrm{Ni}-\mathrm{N}, \sim 2.3^{\circ}$ others.
the angle subtended by the five-membered chelate ring is $81.6(3)^{\circ}$ and non-chelated $\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(4)=$ $100.5(3)^{\circ}$. A further distortion from regular octahedral geometry is a small puckering of the ligand donor atoms: the coordinating N atoms deviate $-0 \cdot 20$, $0.22,-0.23$ and $0.19 \AA$ from the least-squares plane of these atoms plus Ni. This distortion is reflected in the angles, subtended at Ni , between the equatorial donors and the thiocyanate N atoms. Torsion angles about the bonds of the chelate rings are shown in Fig. 5. The five-membered ring approximates a cyclopentane half chair while the six-membered rings approximate the half-chair conformation of cyclohexene (Eliel, Allinger, Angyal \& Morrison, 1965). Curtis (1979) has classified the conformations of such cyclohexene-type chelate rings according to the displacements, from the $M \mathrm{~N}_{2}$ plane, of the C atoms a and β to the double bond. If C_{β} [i.e. $C(7)$ or $C(16)]$ is displaced further on the same side of this plane than $\mathrm{C}_{\alpha}[$ i.e. $\mathrm{C}(8)$ or $\mathrm{C}(13)]$, then it is an A conformation, but if the C_{β} displacement is less than, or on the opposite side from, C_{a} then it is a B conformation. As can be seen in Fig. 4, both rings are of type B. The bond angles at the central methylene groups of both rings suggest some angular strain at these C atoms. Similar effects have been seen in related complexes, with these angles being as much as 120-121 ${ }^{\circ}$ (Kilbourn, Ryan \& Dunitz, 1969). The asymmetric amine N atoms, $\mathrm{N}(2)$ and $\mathrm{N}(3)$, have the same chirality, and thus, by virtue of the centrosymmetric space group, the crystal contains a racemic mixture of $R R$ and $S S$ enantiomers. This is in keeping with the apparent tendency of cis-bonded chiral N centres to be rac rather than meso (i.e. with $R S$ enantiomers).

Table 4. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{Ni}(L 1)(\mathrm{NCS})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (I) and $\left[\mathrm{Ni}(L 1)\left(\mathrm{NO}_{2}\right)\right]\left(\mathrm{ClO}_{4}\right)$ (II)
In (I) $X=\mathrm{N}$; in (II) $X=\mathrm{O}$. In the disordered region of (II), the values for both orientations are given.

	(I)	(II)		(1)	(11)
$\mathrm{Ni}-\mathrm{N}(1)$	$2 \cdot 146$ (7)	2.081 (3)	$\mathrm{Ni}-\mathrm{N}(4)$	$2 \cdot 124$ (7)	2.072 (4)
$\mathrm{Ni}-\mathrm{N}(2)$	$2 \cdot 133$ (7)	2.097 (4)	$\mathrm{Ni}-\mathrm{N}(3)$	2.134 (7)	2.072 (4)
$\mathrm{Ni}-X(71)$	$2 \cdot 116$ (8)	$2 \cdot 132$ (4)	$\mathrm{Ni}-X(72)$	2.077 (8)	2.171 (4)
$\mathrm{N}(5)-\mathrm{N}(1)$	1.41 (1)	1.418 (5)	$\mathrm{N}(6)-\mathrm{N}(4)$	1.39 (1)	1.372 (5)
$\mathrm{N}(1)-\mathrm{C}(5)$	1.28 (1)	1.289 (6)	$\mathrm{N}(4)-\mathrm{C}(17)$	1.26 (1)	1.33 (2), 1.24 (2)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.51 (1)	1.489 (7)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.51 (1)	1.48 (4), 1.47 (4)
$\mathrm{C}(5)-\mathrm{C}(7)$	1.50 (1)	1.501 (6)	$\mathrm{C}(17)-\mathrm{C}(16)$	1.51 (1)	1.46 (3), 1.51 (3)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.55 (1)	1.519 (7)	$\mathrm{C}(16)-\mathrm{C}(13)$	1.54 (1)	1.60 (3), 1.40 (3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.50 (1)	1.527 (6)	C(13)-C(14)	1.52 (1)	1.44 (4), 1.60 (4)
$\mathrm{C}(8)-\mathrm{C}(10)$	1.54 (1)	1.532 (7)	C(13)-C(15)	1.54 (1)	1.59 (3), 1.49 (3)
$\mathrm{C}(8)-\mathrm{N}(2)$	1.50 (1)	1.504 (6)	$\mathrm{C}(13)-\mathrm{N}(3)$	$1 \cdot 50$ (1)	1.58 (2), 1.48 (3)
$\mathrm{N}(2)-\mathrm{C}(11)$	1.50 (1)	1.484 (6)	$\mathrm{N}(3)-\mathrm{C}(12)$	1.48 (1)	1.479 (6)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.50 (1)	1.515 (7)	$\mathrm{O}(71) \cdots \mathrm{O}(72)$		2.096 (5)
$\mathrm{N}(71)-\mathrm{C}(71)$	1.15 (1)		$\mathrm{N}(72)-\mathrm{C}(72)$	$1 \cdot 14$ (1)	
$\mathrm{C}(71)-\mathrm{S}(1)$	1.62 (1)		$\mathrm{C}(72)-\mathrm{S}(2)$	1.64 (1)	
$\mathrm{O}(71)-\mathrm{N}(7)$		1.276 (6)	$\mathrm{O}(72)-\mathrm{N}(7)$		1.246 (6)
$\mathrm{Cl}-\mathrm{O}(1)$		1.394 (7)	$\mathrm{Cl}-\mathrm{O}(3)$		1.358 (13)
$\mathrm{Cl}-\mathrm{O}(2)$		1.394 (7)	$\mathrm{Cl}-\mathrm{O}(4)$		1.376 (8)
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(2)$	90.7 (3)	92.5 (1)	$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{N}(4)$	89.3 (3)	93.4 (2)
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(3)$	164.7 (3)	97.0 (2)	$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(3)$	81.6 (3)	83.1 (1)
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(4)$	$100 \cdot 5$ (3)	94.8 (2)	$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(4)$	$165 \cdot 2$ (3)	172.2 (1)
$\mathrm{N}(1)-\mathrm{Ni}-X(71)$	85.4 (3)	104.0 (2)	$\mathrm{N}(2)-\mathrm{Ni}-X(71)$	99.4 (3)	91.8 (1)
$\mathrm{N}(1)-\mathrm{Ni}-X(72)$	92.6 (3)	$162 \cdot 2$ (2)	$\mathrm{N}(2)-\mathrm{Ni}-X(72)$	84.5 (3)	86.3 (1)
$\mathrm{N}(3)-\mathrm{Ni}-X(7 \mathrm{I})$	83.0 (3)	158.6 (2)	$\mathrm{N}(4)-\mathrm{Ni}-X(71)$	91.0 (3)	89.0 (2)
$\mathrm{N}(3)-\mathrm{Ni}-X(72)$	99.9 (3)	100.4 (2)	$\mathrm{N}(4)-\mathrm{Ni}-X(72)$	$85 \cdot 6$ (3)	87.5 (2)
$X(71)-\mathrm{Ni}-X(72)$	175.4 (3)	58.4 (2)			
$\mathrm{Ni}-\mathrm{N}(1)-\mathrm{N}(5)$	117.6 (5)	115.5 (3)	$\mathrm{Ni}-\mathrm{N}(4)-\mathrm{N}(6)$	113.2 (5)	116.7 (3)
$\mathrm{Ni}-\mathrm{N}(1)-\mathrm{C}(5)$	125.9 (6)	$127 \cdot 3$ (3)	$\mathrm{Ni}-\mathrm{N}(4)-\mathrm{C}(17)$	127.7 (6)	124.6 (6), 125.0 (7)
$\mathrm{N}(5)-\mathrm{N}(1)-\mathrm{C}(5)$	115.0 (7)	116.2 (4)	$\mathrm{N}(6)-\mathrm{N}(4)-\mathrm{C}(17)$	118.6 (8)	$113.2(7), 116.9$ (8)
$\mathrm{Ni}-\mathrm{N}(2)-\mathrm{C}(8)$	122.4 (5)	116.9 (3)	$\mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(13)$	121.4 (5)	124 (1), 112 (1)
$\mathrm{Ni}-\mathrm{N}(2)-\mathrm{C}(11)$	107.5 (5)	$107 \cdot 6$ (3)	$\mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(12)$	108.0 (5)	$102 \cdot 3$ (3)
$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(11)$	114.7 (7)	113.6 (4)	$\mathrm{C}(13)-\mathrm{N}(3)-\mathrm{C}(12)$	118.3 (7)	108 (1), 123 (1)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(7)$	118.9 (8)	122.6 (4)	$\mathrm{N}(4)-\mathrm{C}(17)-\mathrm{C}(16)$	122.2 (8)	118 (1), 118 (1)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	122.6 (8)	$120 \cdot 2$ (4)	$\mathrm{N}(4)-\mathrm{C}(17)-\mathrm{C}(18)$	121.2 (9)	123 (1), 126 (2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$	118.3 (8)	$117 \cdot 1$ (4)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	116.6 (8)	118 (2), 116 (2)
$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	117.0 (7)	120.5 (4)	$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{C}(17)$	117.8 (7)	128 (2), 110 (2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(2)$	103.9 (7)	110.8 (3)	$\mathrm{C}(16)-\mathrm{C}(13)-\mathrm{N}(3)$	106.9 (7)	98 (1), 115 (2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	112.7 (8)	111.9 (4)	$\mathrm{C}(16)-\mathrm{C}(13)-\mathrm{C}(14)$	112.4 (8)	115 (2), 108 (2)
C(7)-C(8)-C(10)	108.3 (7)	107.5 (4)	$\mathrm{C}(16)-\mathrm{C}(13)-\mathrm{C}(15)$	108.4 (7)	104 (2), 116 (3)
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$110 \cdot 1$ (7)	$107 \cdot 8$ (4)	$\mathrm{N}(3)-\mathrm{C}(13)-\mathrm{C}(14)$	$109 \cdot 3$ (7)	118 (2), 100 (2)
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(10)$	110.2 (8)	$110 \cdot 2$ (4)	$\mathrm{N}(3)-\mathrm{C}(13)-\mathrm{C}(15)$	110.4 (7)	107 (2), 110 (2)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)$	111.3 (8)	108.6 (4)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)$	109.5 (8)	113 (2), 105 (2)
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	107.8 (8)	111.2 (4)	$\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{C}(11)$	$109 \cdot 2$ (7)	106.6 (4)
$\mathrm{Ni}-\mathrm{N}(71)-\mathrm{C}(71)$	$162 \cdot 3$ (7)		$\mathrm{Ni}-\mathrm{N}(72)-\mathrm{C}(72)$	167.3 (8)	
$\mathrm{N}(71)-\mathrm{C}(71)-\mathrm{S}(1)$	179 (1)		$\mathrm{N}(72)-\mathrm{C}(72)-\mathrm{S}(2)$	179 (1)	
$\mathrm{Ni}-\mathrm{O}(71)-\mathrm{N}(7)$		95.1(3)	$\mathrm{Ni}-\mathrm{O}(72)-\mathrm{N}(7)$		94.1 (3)
$\mathrm{O}(71)-\mathrm{N}(7)-\mathrm{O}(72)$		112.5 (4)			

The $\mathrm{Ni}-\mathrm{N}$ (thiocyanate) distances of 2.116 and 2.077 (9) \AA are somewhat shorter than the $\mathrm{Ni}-\mathrm{N}$ distances for the tetradentate ligand. The interatomic distances within these ligands are comparable with those found in other thiocyanate complexes (Brown \& Lingafelter, 1963). Departures from linearity at the N atom are commonly found, varying from 111° in tetrahedral $\mathrm{K}_{2} \mathrm{Co}(\mathrm{NCS})_{4}$, through 160° in binuclear $\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)(\mathrm{NCS})_{2}$, to 180° in $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{NCS})$ (Brown \& Lingafelter, 1963). We believe that the values found for (I) [162.3 and 167.3 (8) ${ }^{\circ}$] originate from packing forces alone.

The water molecule of crystallization connects $\left[\mathrm{Ni}(L 1)(\mathrm{NCS})_{2}\right]$ molecules via weak hydrogen bonds. Specifically there are close contacts between $\mathrm{H}(\mathrm{O} 11)$ and $\mathrm{S}(2)$ of one molecule ($2.03 \AA$) and $\mathrm{H}(\mathrm{O} 12)$ and $\mathrm{N}(5)$ of a symmetry-related molecule ($1.95 \AA$). $\mathrm{H}(\mathrm{N} 2)$ and $\mathrm{H}(102)$ of the latter molecule also provide short contacts with $\mathrm{O}(1)$ (2.49 and $2.30 \AA$, respectively) with the four interactions forming a roughly tetrahedral array about $\mathrm{O}(1)$.

In (II) the Ni ion is coordinated with roughly octahedral geometry to the two O atoms of the nitrite ligand, and to the N atoms of the tetradentate ligand.

The major distortion from regular octahedral coordination arises from the extremely short bite of the bidentate nitrite ion $[2.096(5) \AA] . L 1$ folds across the $N(2)-N(4)$ diagonal so that $N(1), N(2), N(4)$ and $\mathrm{O}(72)$ lie in one equatorial plane of the approximate octahedron, with $\mathrm{N}(3)$ axial to this plane. The $\mathrm{Ni}-\mathrm{N}$ bond lengths, which range from 2.072 (4) to 2.097 (4) \AA, are shorter than the corresponding lengths in (I). The $\mathrm{N}-\mathrm{Ni}-\mathrm{N}$ angles correspond reasonably closely to those in (I) despite the different ligand configuration. $\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(3)$ formed by the fivemembered chelate ring is $83 \cdot 1$ (1), and $\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(4)$ is $94.8(2)^{\circ}$; the latter shows the largest difference from its corresponding value in (I) $\left[100 \cdot 5(3)^{\circ}\right]$.

The configurations of the chelate rings are shown in Figs. 4 and 5. The five-membered ring adopts a conformation most closely related to the envelope conformer of cyclopentane. The folding of the tetradentate ligand is therefore creating some torsional bond strain along $N(2)-C(11)$. The six-membered ring $\operatorname{NiN}(1) \mathrm{C}(5) \mathrm{C}(7) \mathrm{C}(8) \mathrm{N}(2)$ is a half chair with some bond-angle strain evident at $\mathrm{C}(7)$ [angle $\mathrm{C}(5)-\mathrm{C}(7)-$ $\left.C(8)=120.5(4)^{\circ}\right]$. The disordered ring shows two possible half-chair conformers of cyclohexene which are interconvertible via chair inversion (Bucourt, 1974), but the rather large e.s.d.'s in the bond distances and angles do not permit a detailed analysis. Both configurations of this ring belong to Curtis's B classification, as does the other six-membered ring.

The nitrite ligand is coordinated to the Ni atom as an asymmetrically bound O, O^{\prime}-bidentate chelate $[\mathrm{Ni}-\mathrm{O}=$ $2 \cdot 171$ (3) and $2 \cdot 132$ (4) \AA]. The structures of three other six-coordinate $\mathrm{Ni}^{I I}$ complexes with bidentate nitrito groups have been reported: [$\mathrm{Ni}(\mathrm{tmen})_{2}\left(\mathrm{NO}_{2}\right)_{2}$] (tmen $=$ tetramethylethylenediamine) where $\mathrm{Ni}-\mathrm{O}=$ 2.066 and $2.150(9) \AA$ for one NO_{2} group and 2.059 and $2 \cdot 117$ (9) \AA for the other (Drew \& Rogers, 1965); $\left[\mathrm{Ni}(s \text {-deen })_{2}\left(\mathrm{NO}_{2}\right)\right]\left(\mathrm{BF}_{4}\right)$ (deen $=$ diethylethylenediamine) where $\mathrm{Ni}-\mathrm{O}=2.099$ and $2 \cdot 123$ (3) \AA (Birdy, Goodgame, McConway \& Rogers, 1977); and $[\mathrm{Ni}(s-$ deen $\left.)_{2}\left(\mathrm{NO}_{2}\right)\right]\left(\mathrm{NO}_{2}\right)$ where $\mathrm{Ni}-\mathrm{O}=2.151$ and 2.155 (7) \AA in one molecule and 2.148 and 2.153 (7) \AA in the other (Goldberg \& Marsh, 1979). In the first two of these complexes the $\mathrm{Ni}-\mathrm{O}$ bonds are significantly asymmetric. In (II) there is also a significant difference in the $\mathrm{N}-\mathrm{O}$ bond lengths [1.246 $c f .1 .276(6) \AA]$, the shorter $\mathrm{N}-\mathrm{O}$ bond being associated with the longer $\mathrm{Ni}-\mathrm{O}$ distance. This is not observed for the other nitrito complexes mentioned
above, but another complex presently being studied in this laboratory, $\left[\mathrm{Ni}\left(\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}\right)\left(\mathrm{NO}_{2}\right)\right] \mathrm{ClO}_{4} .0 .5 \mathrm{H}_{2} \mathrm{O}$, does show this correlation, with respective $\mathrm{Ni}-\mathrm{O}$ and $\mathrm{N}-\mathrm{O}$ distances of $2 \cdot 144$ (6), $1 \cdot 31$ (1) and $2 \cdot 183$ (6), 1.25 (1) \AA. An equivalent relationship has also been observed in some bidentate nitrates (Addison, Logan, Wallwork \& Garner, 1971).

We thank Professor N. F. Curtis for initiating the project and supplying the samples. We are also grateful for the financial support of the Natural Sciences and Engineering Council of Canada through a scholarship (ARD) and a grant (FWBE).

References

Addison, C. C., Logan, N., Wallwork, S. C. \& Garner, C. D. (1971). Q. Rev. Chem. Soc. 25, 289-322.
birdy, R., Goodgame, D. M. L., McConway, J. C. \& Rogers, D. (1977). J. Chem. Soc. Dalton Trans. pp. 1730-1733.
Brown, B. W. \& Lingafelter, E. C. (1963). Acta Cryst. 16, 753-758.
Bucourt, R. (1974). Top. Stereochem. 8, 159-224.
Churchill, M. R. (1973). Inorg. Chem. 12, 1213-1214.
Curtis, N. F. (1968). Coord. Chem. Rev. 3, 3-47.
Curtis, N. F. (1979). Coordination Chemistry of Macrocyclic Compounds, edited by G. A. Melson, pp. 219-344. New York: Plenum Press.
Curtis, N. F. (1980): Private communication.
Davis, A. R., Einstein, F. W. B. \& Willis, A. C. (1982). Acta Cryst. B38, 443-448.
Drew, M. G. B. \& Rogers, D. (1965). Chem. Commun. pp. 476-477.
Einstein, F. W. B. \& Jones, R. D. G. (1972). Inorg. Chem. 11, 395-400.
Eliel, E. L., Allinger, N. L., Angyal, S. J. \& Morrison, G. A. (1965). Conformation Analysis. New York: John Wiley.
Goldberg, M. J. \& Marsh, R. E. (1979). Acta Cryst. B35, 960-962.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Kerwin, C. M. \& Melson, G. A. (1972). Inorg. Chem. 11, 726-729.
Kilbourn, B. T., Ryan, R. R. \& Dunitz, J. D. (1969). J. Chem. Soc. A, pp. 2407-2412.
Lindoy, L. F. (1971). Q. Rev. Chem. Soc. 25, 379-391.
Peng, S.-M. \& Goedken, V. L. (1973). Chem. Commun. pp. 62-63.

[^0]: * To whom correspondence should be addressed.

[^1]: * For both compounds, lists of structure factors, anisotropic thermal parameters, H -atom coordinates, angles for the perchlorate group and least-squares planes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36326 (46 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * E.s.d. in the mean is given by $\sigma=1 \sum_{m}\left(l_{m}-\bar{l}\right)^{2} /\left.m(m-1)\right|^{1 / 2}$ where l_{m} is the length of the m th bond, l is the mean length and m is the number of bonds.

